## Exercise 12

Find the general solution for the following initial value problems:

$$
u^{\prime \prime}-9 u=0, \quad u(0)=1, u^{\prime}(0)=0
$$

## Solution

This is a homogeneous linear ODE with constant coefficients, so the solution is of the form, $u=e^{r x}$.

$$
u=e^{r x} \quad \rightarrow \quad u^{\prime}=r e^{r x} \quad \rightarrow \quad u^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-9 e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-9=0
$$

Factor the left side.

$$
(r+3)(r-3)=0
$$

$r=-3$ or $r=3$, so the general solution is

$$
u(x)=C_{1} e^{-3 x}+C_{2} e^{3 x} .
$$

Because we have two initial conditions, we can determine $C_{1}$ and $C_{2}$.

$$
\begin{gathered}
u^{\prime}(x)=-3 C_{1} e^{-3 x}+3 C_{2} e^{3 x} \\
u(0)=C_{1}+C_{2}=1 \\
u^{\prime}(0)=-3 C_{1}+3 C_{2}=0
\end{gathered}
$$

Solving this system of equations gives $C_{1}=1 / 2$ and $C_{2}=1 / 2$. Therefore,

$$
u(x)=\frac{1}{2} e^{-3 x}+\frac{1}{2} e^{3 x}=\cosh 3 x .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =3 \sinh 3 x \\
u^{\prime \prime} & =9 \cosh 3 x .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-9 u=9 \cosh 3 x-9 \cosh 3 x=0,
$$

which means this is the correct solution.

